Step of Proof: list_extensionality
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
list
extensionality
:
1.
T
: Type
2.
a
:
T
List
3.
b
:
T
List
4. ||
a
|| = ||
b
||
5.
i
:
. (
i
< ||
a
||)
(
a
[
i
] =
b
[
i
])
a
=
b
latex
by ((((((((((MoveToConcl 3)
CollapseTHEN (ListInd 2))
)
CollapseTHEN (RAA (D 0)))
)
Co
CollapseTHEN (ListInd (-1)))
)
CollapseTHEN (Reduce 0))
)
CollapseTHEN ((Auto_aux (first_nat
C
1:n) ((first_nat 2:n),(first_nat 3:n)) (first_tok SupInf:t) inil_term)))
latex
C
1
:
C1:
3.
u
:
T
C1:
4.
v
:
T
List
C1:
5.
b
:(
T
List). (||
v
|| = ||
b
||)
(
i
:
. (
i
< ||
v
||)
(
v
[
i
] =
b
[
i
]))
(
v
=
b
)
C1:
6.
T
List
C1:
7.
u1
:
T
C1:
8.
v1
:
T
List
C1:
9. (||[
u
/
v
]|| = ||
v1
||)
C1: 9.
(
i
:
. (
i
< ||[
u
/
v
]||)
([
u
/
v
][
i
] =
v1
[
i
]))
C1: 9.
([
u
/
v
] =
v1
)
C1:
10. ||
v
||+1 = ||
v1
||+1
C1:
11.
i
:
. (
i
< (||
v
||+1))
([
u
/
v
][
i
] = [
u1
/
v1
][
i
])
C1:
[
u
/
v
] = [
u1
/
v1
]
C
.
Definitions
,
t
T
,
Y
,
P
Q
,
x
:
A
.
B
(
x
)
,
||
as
||
,
Lemmas
length
cons
,
length
wf1
,
non
neg
length
,
length
wf2
,
select
wf
,
nat
wf
origin